Cabbage breeding tools for biotic and abiotic resistance

Authors

  • N. K. Prajapati Department of Horticulture, SAST, Babasaheb Bhimrao Ambedkar University, Lucknow (U.P.) - 226025 Author
  • Anjali Department of Horticulture, School of Agricultural Sciences and Technology, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow (U.P.) – 226025, India Author
  • Ramesh Chand Meena Department of Horticulture, School of Agricultural Sciences and Technology, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow (U.P.) – 226025, India Author
  • Razauddin Department of Horticulture, School of Agricultural Sciences and Technology, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow (U.P.) – 226025, India Author
  • S. Kumar Department of Horticulture, School of Agricultural Sciences and Technology, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow (U.P.) – 226025, India Author
  • P. Kumar Department of Horticulture, School of Agricultural Sciences and Technology, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow (U.P.) – 226025, India Author
  • K. Chand Department of Horticulture, School of Agricultural Sciences and Technology, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow (U.P.) – 226025, India Author

DOI:

https://doi.org/10.51258/RJH.2024.03

Keywords:

crop improvement, cole crops, breeding tools, stress tolerance, breeding approaches

Abstract

Cabbage (Brassica oleracea var. capitata) is an important vegetable crop grown globally for its nutritional value and economic importance. However, cabbage production faces significant challenges from various biotic and abiotic stresses, including pests, diseases, and environmental factors such as drought, heat, and salinity. Developing cabbage varieties with improved resistance to these stresses is crucial for sustainable and productive agriculture. This review article examines the latest breeding tools and approaches used to enhance biotic and abiotic stress resistance in cabbage. It explores traditional breeding methods, marker-assisted selection, genetic engineering, genome editing techniques like CRISPR/Cas9, and emerging technologies such as genomic selection and speed breeding. Furthermore, the article discusses the integration of -omics approaches, including genomics, transcriptomics, proteomics, and metabolomics, to accelerate the development of stress-resistant cabbage varieties. The study also highlights the importance of incorporating farmer preferences and participatory breeding strategies to ensure the adoption and success of these improved cabbage varieties.

Downloads

Download data is not yet available.

References

Ahloowalia B. S., Maluszynski M., and Nichterlein K. (2004). Global impact of mutation-derived varieties. Euphytica, 135(2), 187-204.

Altieri, M. A. (2004). Linking ecologists and traditional farmers in the search for sustainable agriculture.

Frontiers in Ecology and the Environment, 2(1), 35-42.

Bajji M., Lutts, S., and Kinet J. M. (2001). Water deϐicit effects on solute contribution to osmotic adjustment as a function of leaf ageing in three durum wheat (Triticum turgidum durum Desf.) cultivars. Plant Science, 160(4), 669-681.

Baulcombe D. C., and Dean C. (2014). Epigenetic inheritance during plant gametogenesis. Cold Spring Harbor Perspectives in Biology, 6(2), a019497

Bawa A. S., and Anilakumar K. R. (2013). Genetically modiϐied foods: safety, risks and public concerns—a review. Journal of Food Science and Technology, 50(6), 1035-1046.

Bernardo R. (2008). Molecular markers and selection for complex traits in plants: learning from the last years. Crop Science, 48(5), 1649-1664.

Bhandari A., Bartholome J., Sepunaru L. T., Heesacker A., Ramsay L., Tirfessa A., and Linden, G. (2022).

Genomic selection for drought stress tolerance in cabbage using high-density genotyping. Frontiers in

Plant Science, 13.

Bhat K. A., and Kolanjakkaren S. P. (2014). Bacterial diseases of Brassica oleracea and their management. African Journal of Biotechnology, 13(7), 772-787

Bortesi L., and Fischer R. (2015). The CRISPR/Cas9 system for plant genome editing and beyond.

Biotechnology Advances, 33(1), 41-52.

Bradshaw J. E. (Ed.). (2016). Plant breeding: past, present and future. Springer

Buckler E. S., Acharya C.B., Hasan M., Holbrook C.C., Klittich C.J., Kohl B.A., and Wisser R.J. (2021).

Participatory breeding and genomic selection. In Sustainable Food Systems (pp. 163-185). Academic

Press.

Cao J., Zhao J. Z., Tang, J. D., Shelton A. M., and Earle E. D. (2002). Broccoli plant resistance to larval feeding by diamondback moth (Lepidoptera: Plutellidae). Journal of Economic Entomology, 95(4), 829-833.

Chandra A., Anandan, A., Srivastava R., Laha G. S., and Mehta P. S. (2021). Mapping and validation of a major dominant black rot resistance gene in heading Chinese cabbage using CAPS markers. Euphytica, 217(4), 1-10

Ceccarelli S.(2015). Efϐiciency of plant breeding. Crop Science, 55(1), 87-97.

Chaturvedi R., Venables B., Petros, R. A., Nalam V., Li M., Wang X., and Shah J. (2012). An abietane

diterpenoid is a potent activator of systemic acquired resistance. The Plant Journal, 71(1), 161-172.

Collard B. C., and Mackill D. J.(2008). Marker-assisted selection: an approach for precision plant breeding in the twenty-ϐirst century. Philosophical Transactions of the Royal Society B: Biological Sciences, 363(1491), 557-572.

Del Carmen Martı́nez-Ballesta, M., Moreno D. A., and Carvajal M. (2013). The physiological importance of glucosinolates on plant response to abiotic stress in Brassica. International Journal of Molecular

Scinces, 14(6), 11607-11625.

Fahad S., Bajwa A. A., Nazir U., Anjum S. A., Farooq A., Zohaib A., and Huang J. (2017). Crop production under drought and heat stress: plant responses and management options. Frontiers in Plant Science, 8, 1147.

Farooq M., Hussain M., and Siddique K. H. (2014). Drought stress in wheat and sorghum: an overview.

Journal of Agronomy and Crop Science, 200(4), 237-245.

Food and Agriculture Organization of the United Nations. (2021). FAOSTAT Database. Retrieved from

http://www.fao.org/faostat/en/#data/QC

Gao F., Zhou Y., Zhu W., Li X., Fan, L., and Zhang G. (2009). Proteomic analysis of cold stress-responsive proteins in Thellungiella rosette leaves. Planta, 230(5), 1033.

Hallauer A. R., and Carena M. J. (2014). Recurrent selection methods to increase population means. Plant Breeding Reviews, 38, 1-58.

Hauben M., Haesendonckx B., Standaert E., Kyndt T., and Depicker A. (2009). Energy use efϐiciency is

characterized by an epigenetic component that can be directed through artiϐicial selection to increase

yield. Proceedings of the National Academy of Sciences, 106(47), 20109-20114.

Hirai M. (2006). Genetic analysis of clubroot resistance in Brassica crops. Breeding Science, 56(3), 223-229.

Hu B. L., Huang D. R., Zhu L. F., Li, S. P., Yang C. Y., Zhao G., and Li Y. R. (2019). Plant defensin CaDEF1 confers Resistance to Plutella xylostella through Raptor-mediated selective autophagy. Plant Physiology, 180(4), 1779-1794.

Juroszek P., and Tsai H. H. (2020). Biotic and abiotic stresses in cabbage production. In Cabbage Production (pp. 141-165). CRC Press.

Lassoued, R., Phillips, P. W., and Smyth, S. J. (2020). Estimating the beneϐits of plant genome editing for agricultural productivity: An example from Canada. Transgenic Research, 29, 123-135.

Liu W., and Stewart C. N.(2015). Plant synthetic biology. Trends in Plant Science, 20(5), 309-317.

Liu S., Liu Y., Yang, X., Tong C., Edwards, D., Parkin, I. A., and Xu, K. (2014). The Brassica oleracea genome reveals the historical chromosome karyotype and the divergence of duplicated genes. Genome Biology, 15(9), 1-17.

Lee J. G., Kim H. J., Nagarajan V., Tripathy S., Kang B., and Kang W. H. (2021). Mapping of QTLs for cold

tolerance in cabbage (Brassica oleracea L.). Scientia Horticulturae, 277, 109825

Meuwissen T. H., Hayes B. J., and Goddard M. E. (2001). Prediction of total genetic value using genome-wide dense marker maps. Genetics, 157(4), 1819-1829.

Muzzarelli R. A. A., Muzzarelli C., Tarsi R. Miliani M., Gabbanini O., and Cartolari M. (2001). Fungistatic

activity of modiϐied chitosans against Saprolegnia ferax. Biomacromolecules, 2(1), 165-169.

Mora A. A., and Earle E. D. (2001). Combination of oxalate oxidase with a microbial biocontrol agent or oxalic acid for control of Peronospora downy mildew of broccoli. Journal of Phytopathology, 149(5), 295-302.

Nicolia A., Manzo A., Veronesi F., and Rosellini D. (2014). An overview of the last 10 years of genetically engineered crop safety research. Critical reviews in biotechnology, 34(1), 77-88.

Peng Z., Wang M., Li, F., Lv H., L C., and Xia G. (2009). A proteomic study of the response to salinity and drought stress in an introgression strain of bread wheat. Molecular and Cellular Proteomics, 8(12), 2676- 2686.

Prakash S., Singh P. K., Prakash S., and Singh B. (2021). Pedigree breeding in crop plants. In Breeding

Strategies for Improving Plant Productivity (pp. 1-15). CRC Press.

Ren J., Petzoldt R., and Dickson M. H. (2001). Genetics and population development of Plasmodiophora brassicae, the causal agent of clubroot. Journal of Genetics and Breeding, 55(3), 189-195.

Rimmer S. R., Shattuck V. I., and Buchwaldt L. (2007). Compendium of Brassica diseases. American Phyto pathological Society (APS Press).

Sakuraba Y., Jeong J., Kang M. Y., Kim, J., Paek N. C., and Choi G. (2017). Phytochrome-interacting

transcription factors PIF4 and PIF5 induce leaf senescence in Arabidopsis. Nature Communications,

(1), 1-10.

Savchenko T., Whanyiri K., Nadiradze M., Haile T., Kхалян В. О., and Kashchavtsev, A. (2010). Changes in metabolome proϐile of transgenic cabbage plants harbouring viral resistance genes. Chemistry of Natural Compounds, 46(5), 711-715.

Sarıkamış G., Balkaya A., and Yanmaz R. (2009). Nutritional composition of some cultivars of cabbage (Brassica oleracea L. var. capitata) and their utilization values. Asian Journal of Chemistry, 21(3), 2213- 2220.

Sharma K., Kulkarni G., Thakur S., Sharma G., Sekhon M. S., and Ghai T. R. (2017). Molecular mapping of the Brassica juncea–Alternaria brassicae Patho system reveals BjuPR-1, BjuPR-4 and BjuDF1. 2 as

pathogenesis related actors at initial phase of pathogenesis. Journal of Plant Biochemistry and Biotechnology, 26(1), 37-50.

Shelton A. M., and Badenes-Perez F. R. (2006). Concepts and applications of trap cropping in pest

management. Annual Review of Entomology, 51, 285-308.

. Shukla P., and Tenzer I. (2017). Viruses associated with cabbage and their management. International Journal of Vegetable Science, 23(6), 535-553.

Shukla S., Naik, A. K., and Sundaram,P. K. (2014). Heterosis and combining ability studies for seed yield and its components in cabbage (Brassica oleracea var. capitata L.). International Journal of Plant Breeding and Genetics, 8(1), 23-32.

Tang J. D., Shelton A. M., Van Rie, J., and Wallace R. A. (1996). Insecticide resistance in the diamondback moth: development of genetically engineered Brassica using herbicide and insecticide resistance genes from Bacillus thuringiensis. In Proceedings of the IV International Workshop on Management of Diamondback Moths and Other Crucifer Pests (Vol. 369, p. 427).

Tester M., and Langridge P. (2010). Breeding technologies to increase crop production in a changing world. Science, 327(5967), 818-822.

Vernooy R., Shrestha P., Sthapit, B., and Ramı́rez M. (2015). Community seed banks: Origin, evolution and prospects. Routledge.

Wang W., Vinocur, B., and Altman A. (2003). Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta, 218(1), 1-14.

Watson A., Ghosh S., Williams M. J., Cuddy W. S., Simmonds J., Rey M. D., and Hickey L. T. (2018). Speed breeding is a powerfultooltoaccelerate crop researchand breeding.Nature Plants, 4(1), 23-29.

Zhang J., Yu, J., Liu J., Deng S., Zhu J., Jiang Q., and Liu B. (2020). QTL mapping for yield-related traits in

cabbage (Brassica oleracea L. var. capitata) using differenteph-rated single-nucleotide polymorphism

markers. Frontiers in Plant Science, 11, 711.

Yang J., Cao, Z., Yang, H., Zhang H., and Zheng Y. (2021). Integrated mRNA and small RNA transcriptomes reveal novel insights into light-regulated gene expression in cabbage seedlings. Plant Physiology and Biochemistry, 163, 183-195.

Yang H., Hu, L., Hurek T., and Reinhold-Hurek B. (2010). Global characterization of the root transcriptome of wild species of Brassicaceae: an opportunity for identifying novel genes for traits of bioenergy crops. BMC Genomics, 11(1), 1-15.

Downloads

Published

2024-12-21

How to Cite

(1)
Prajapati, N. K.; Anjali; Meena, R. C.; Razauddin; Kumar, S.; Kumar, P.; Chand, K. Cabbage Breeding Tools for Biotic and Abiotic Resistance. RJH 2024, 5, 23-32. https://doi.org/10.51258/RJH.2024.03.

Similar Articles

1-10 of 53

You may also start an advanced similarity search for this article.