Genetic and agronomic approaches to control Orobanche and Phelipanche spp. parasitic weeds in vegetables and legumes

Authors

  • A. Cuccurullo CREA Research Centre for Vegetable and Ornamental Crops, Pontecagnano Faiano (SA), Italy Author
  • A. Nicolia CREA Research Centre for Vegetable and Ornamental Crops, Pontecagnano Faiano (SA), Italy Author
  • M. Vurro CNR-ISPA, Institute of Sciences of Food Production, Bari, Italy Author
  • T. Cardi CREA Research Centre for Vegetable and Ornamental Crops, Pontecagnano Faiano (SA), Italy - CNR-IBBR, Institute of Biosciences and Bioresources, Portici (NA), Italy Author

DOI:

https://doi.org/10.51258/RJH.2022.08

Keywords:

Broomrapes, Orobanche, Phelipanche, Strigolactones, Vegetables, Legumes.

Abstract

Broomrapes (Orobanche and Phelipanche spp.) rely on the presence of a host plant for nourishment. Based on the release of specific molecules by the crop plant, their seeds germinate and eventually establish a vascular connection with host roots through a haustorium. Therefore, they deprive their hosts of water and nutrients, posing a severe threat to vegetable and legume crops worldwide. Due to their growth behaviour, amount and longevity of seeds released, and, generally, a large variety of hosts, the control of parasitic plants is rather difficult. In this review, we give an update about agronomic and genetic approaches controlling host-parasite interactions. Management of broomrapes in vegetables and legumes relies on different approaches: trap and catch crops; suicidal germination by strigolactones (SLs), analogues and mimics; SL degradation; biological and chemical control; other control methods. Further, the production of resistant cultivars is highly desirable. Some natural sources of resistance have been identified in landraces and wild relatives of vegetable and legume crops. Additional variability has been discovered by artificial mutagenesis, but it has been poorly exploited for breeding commercial cultivars. Recent genomic knowledge in parasitic and host species opens new perspectives for the comprehension of molecular bases of interaction and applied breeding, using molecular assisted breeding and biotechnological approaches aimed to modify genes controlling the various stages of parasitization. Anyway, the combination of different genetic resistance mechanisms with agronomical management practices is mandatory to develop a durable containment strategy. 

Downloads

Download data is not yet available.

References

Abbes Z., Kharrat M., Delavault P., Chaïbi W., and Simier P. (2009). Nitrogen and carbon relationships between the parasitic weed Orobanche foetida and susceptible and tolerant faba bean lines. Plant Physiol. Biochem. 47: 153–159.

Acharya B.D., Khattri G.B., Chettri M.K., and Srivastava S.C. (2002). Effect of Brassica campestris var. toria as a catch crop on Orobanche aegyptiaca seed bank. Crop Protection 21: 533–537.

Aksoy E., Arslan, Z.F., Tetik Ö., and Eymirli S. (2016). Using the possibilities of some trap, catch and Brassicaceaen crops for controlling crenate broomrape a problem in lentil fields. International Journal of Plant Production 10: 53–62.

Al-Menoufi O. (1989). Crop rotation as a control measure of Orobanche crenata in Vicia faba fields. In Wegmann K., Musselman L. (Eds.), Progress in Orobanche research, Eberhard-Karl-Universitat, pp. 241– 247.

Albert M., Belastegui-Macadam X.M., Bleischwitz M., and Kaldenhoff R. (2008). Cuscuta spp: “Parasitic Plants in the Spotlight of Plant Physiology, Economy and Ecology”. In: Lüttge, U., Beyschlag, W., Murata, J. (eds) Progress in Botany. Progress in Botany, vol 69. Springer, Berlin, Heidelberg, pp. 267–277.

Aloni R. (2015). Ecophysiological implications of vascular differentiation and plant evolution. Trees - Struct. Funct. 29: 1–16.

Aly R., Cholakh, H., Joel D.M., Leibman D., Steinitz B., Zelcer A., Naglis A., Yarden O., and Gal-On A. (2009). Gene silencing of mannose 6-phosphate reductase in the parasitic weed Orobanche aegyptiaca through the production of homologous dsRNA sequences in the host plant. Plant Biotechnol. J. 7: 487–498.

Amsellem Z., Barghouthi S., Cohen B., Goldwasser. Y., Gressel J., Hornok L., Kerenyi Z., Kleifeld,Y., Klein O., Kroschel, J., et al. (2001). Recent advances in the biocontrol of Orobanche (broomrape) species. BioControl 46: 211–228.

Auger B., Pouvreau J.B., Pouponneau K., Yoneyama K., Montiel G., Le Bizec B., Yoneyama K., Delavault P., Delourme R., and Simier P. (2012). Germination stimulants of Phelipanche ramosa in the rhizosphere of Brassica napus are derived from the glucosinolate pathway. Mol. Plant-Microbe Interact. 25: 993–1004.

Avdeyev Y.I., and Scherbinin B.M. (1977). Tomato Resistant to Broomrape, Orobanche aegyptiaca. Report of the Tomato Genetics Cooperative, Report No. 27, Department of Vegetative Crops, University of California (Davis).

Avdeyev Y.I., Scherbinin B.M., Ivanova L.M., and Avdeyev A.Y. (2003). Studying of tomato resistance to broomrape and breeding varieties for processing. Acta Hortic. 613: 283–290.

Aviv D., Amsellem Z. and Gressel J. (2002). Transformation of carrots with mutant acetolactate synthase for Orobanche (broomrape) control. Pest Manag. Sci. 58: 1187–1193.

Ba, J., Wei Q., Shu J., Gan Z., Li B., Yan D., Huang Z., Guo Y., Wang, X., Zhang, L., et al. (2020). Exploration of resistance to Phelipanche aegyptiaca in tomato. Pest Manag. Sci. 76: 3806–3821.

Barghouthi S., and Salman M. (2010). Bacterial inhibition of Orobanche aegyptiaca and Orobanche cernua

radical elongation. Biocontrol Sci Technol 20: 423–435.

Bari V.K., Abu J., Kheredin S.M., Gal-on, A., Ron M., Britt A., Steele D., Yoder J. and Aly, R. (2019). CRISPR/Cas9-mediated mutagenesis of CAROTENOID CLEAVAGE DIOXYGENASE 8 in tomato provides resistance against the parasitic weed Phelipanche aegyptiaca. Sci. Rep. 9: 1–12.

Bari V.K., Nassar J.A. and Aly R. (2021a). CRISPR/Cas9 mediated mutagenesis of MORE AXILLARY GROWTH 1 in tomato confers resistance to root parasitic weed Phelipanche aegyptiaca. Sci. Rep. 11: 1–11.

Bari V.K., Nassar J.A., Meir A. and Aly R. (2021b). Targeted mutagenesis of two homologous ATP-binding cassette subfamily G (ABCG) genes in tomato confers resistance to parasitic weed Phelipanche aegyptiaca. J. Plant Res. 134: 585–597.

Boari A. and Vurro, M. (2004). Evaluation of Fusarium spp. and other fungi as biological control agents of broomrape (Orobanche ramosa). Biol. Control 30: 212–219.

Boari A., Ciasca,B., Pineda-Martos R., Lattanzio V.M., Yoneyama K. and Vurro M. (2016). Parasitic weed management by using strigolactone-degrading fungi. Pest Man. Sci. 72: 2043–2047.

Bouwmeester H., Li C., Thiombiano B., Rahimi M., and Dong L. (2021). Adaptation of the parasitic plant lifecycle: germination is controlled by essential host signaling molecules. Plant Physiol. 185: 1292–1308.

Bouwmeester H.J., Roux C., Lopez-Raez J.A. and Bécard G. (2007). Rhizosphere communication of plants, parasitic plants and AM fungi. Trends Plant Sci. 12: 224–230.

Brahmi I. Mabrouk Y. Brun G., Delavault P., Belhadj O. and Simier P. (2016). Phenotypical and biochemical characterisation of resistance for parasitic weed (Orobanche foetida Poir.) in radiation-mutagenised mutants of chickpea. Pest Manag. Sci. 72: 2330–2338.

Brun G., Spallek T., Simier P. and Delavault P. (2021). Molecular actors of seed germination and haustoriogenesis in parasitic weeds. Plant Physiol. 185: 1270–1281.

Cardi T., D’Agostino N., and Tripodi P. (2017). Genetic Transformation and Genomic Resources for Next- Generation Precise Genome Engineering in Vegetable Crops. Front. Plant Sci. 8: 241.

Casadesús A. and Munné-Bosch, S. (2021). Holoparasitic plant-host interactions and their impact on Mediterranean ecosystems. Plant Physiol. 185: 1325–1338.

Chang M., Lynr D.G., Netzly D.H. and Butler, L.G. (1986). Chemical Regulation of Distance: Characterization of the First Natural Host Germination Stimulant for Striga asiatica. J. Am. Che. Soc.: 108: 7858–7860.

Clarke C.R., Timko M.P., Yoder J.I., Axtell, M.J., and Westwood J.H. (2019). Molecular Dialog between Parasitic Plants and Their Hosts. Annu. Rev. Phytopathol. 57: 279–299.

Cochavi A., Rapaport T., Gendler T., Karnieli A., Eizenberg H., Rachmilevitch S. and Ephrath J.E. (2017). Recognition of Orobanche cumana below-ground parasitism through physiological and hyper spectral measurements in sunflower (Helianthus annuus L.). Front. Plant Sci. 8: 909.

Dalela G.G. and Mathur R.L. (1971). Resistance of Varieties of Eggplant, Tomato and Tobacco to Broomrape (Orobanche cernua Loefl.). PANS Pest Artic. News Summ. 17: 482–483.

Delavaul P. (2015). Knowing the parasite: Biology and genetics of Orobanche. Helia 38: 15–29.

Dhanapal, G.N., Struik, P.C., Udayakumar, M. and Timmermans, P.C.J.M. (1996). Management of Broomrape (Orobanche spp.) – A review. J. Agron. Crop Sci. 176: 335–359.

Disciglio G., Lops F., Carlucci A., Gatta G., Tarantino A., Frabboni L., Carriero F. and Tarantino E. (2016). Effects of different methods to control the parasitic weed Phelipanche ramosa (L.) Pomel. in processing tomato crops. Ital. J. Agron. 11: 39–46.

Dor E., Alperin B., Wininger S., Ben-Dor B., Somvanshi V.S., Koltai H., Kapulnik Y. and Hershenhorn J. (2010). Characterization of a novel tomato mutant resistant to the weedy parasites Orobanche and Phelipanche spp. Euphytica 171: 371–380.

Dor E., Yoneyama K., Wininger S., Kapulnik Y., Yoneyama K., Koltai H., Xie X. and Hershenhorn J. (2011). Strigolactone deficiency confers resistance in tomato line SL-ORT1 to the parasitic weeds Phelipanche and Orobanche spp. Phytopathology 101: 213–222.

Draie R. (2017). Differential Responses of Commercial Tomato Rootstocks to Branched Broomrape. Res. Plant Sci. 5: 15–25.

Draie R., Péron T., Pouvreau J.B., Véronési C., Jégou S., Delavault P., Thoiron S. and Simier P. (2011). Invertases involved in the development of the parasitic plant Phelipanche ramosa: Characterization of the dominant soluble acid isoform, PrSAI1. Mol. Plant Pathol. 12: 638–652.

Dubey N.K., Eizenberg H., Leibman D., Wolf D., Edelstein M., Abu-Nassar J., Marzouk S., Gal-On A. and Aly R. (2017). Enhanced Host-Parasite Resistance Based on Down-Regulation of Phelipanche aegyptiaca Target Genes Is Likely by Mobile Small RNA. Front. Plant Sci. 8: 1574.

Eizenberg H., Aly R. and Cohen Y. (2012). Technologies for Smart Chemical Control of Broomrape (Orobanche spp. and Phelipanche spp.). Weed Sci. 60: 316–323.

Eizenberg H. and Goldwasser Y. (2018). Control of egyptian broomrape in processing tomato: A summary of 20 years of research and successful implementation. Plant Disease 102: 1477–1488.

Eizenberg H., Goldwasser Y., Golan S., Plakhine D. and Hershenhorn J. (2004). Egyptian Broomrape (Orobanche aegyptiaca) Control in Tomato with Sulfonylurea Herbicides—Greenhouse Studies. Weed Technol. 18: 490-496.

El-Halmouch Y., Benharrat H. and Thalouarn P. (2006). Effect of root exudates from different tomato genotypes on broomrape (O. aegyptiaca) seed germination and tubercle development. Crop Prot. 25: 501–507.

El-Rokiek K.G., El-Metwally I.M., Messiha N.K. and Saad El-Din S.A. (2015) Controlling Orobanche crenata in Faba bean using the Herbicides Glyphosate and Imazapic with some additives. Int. J. Chem. Tech. Res. 8: 18–26.

Ephrath J.E. and Eizenberg, H. (2010). Quantification of the dynamics of Orobanche cumana and Phelipanche aegyptiaca parasitism in confectionery sunflower. Weed Res. 50: 140–152.

Evidente A., Cimmino, A., Fernández-Aparicio, M., Andolfi A., Rubiales D. and Motta A. (2010). Polyphenols, including the new peapolyphenols A-C, from pea root exudates stimulate Orobanche foetida seed germination. J. Agric. Food Chem. 58: 2902–2907.

Evidente A., Cimmino A., Fernández-Aparicio M., Rubiales,D., Andolfi A. and Melck D. (2011). Soyasapogenol B and trans-22-dehydrocam-pesterol from common vetch (Vicia sativa L.) root exudates stimulate broomrape seed germination. Pest Manag. Sci. 67: 1015–1022.

Evidente A., Fernández-Aparicio M., Cimmino A., Rubiales D., Andolfi A. and Motta A. (2009). Peagol and peagoldione, two new strigolactone-like metabolites isolated from pea root exudates. Tetrahedron Lett. 50: 6955–6958.

Fernández-Aparicio, M., Delavault, P. and Timko, M.P. (2020). Management of infection by parasitic weeds: A review. Plants 9: 1184.

Fernández-Aparicio, M., Emeran, A.A. and Rubiales, D. (2008). Control of Orobanche crenata in legumes intercropped with fenugreek (Trigonella foenum-graecum). Crop Prot. 27: 653–659.

Fernández-Aparicio, M., Moral, A., Kharrat, M. and Rubiales, D. (2012). Resistance against broomrapes (Orobanche and Phelipanche spp.) in faba bean (Vicia faba) based in low induction of broomrape seed germination. Euphytica 186: 897–905.

Fernández-Aparicio M., Reboud X., and Gibot-Leclerc S. (2016). Broomrape Weeds. Underground Mechanisms of Parasitism and Associated Strategies for their Control: A Review. Front. Plant Sci. 7: 135.

Fondevilla S., Fernández-Aparicio M., Satovic, Z., Emeran A.A., Torres, A.M., Moreno, M.T. and Rubiales, D. (2010). Identification of quantitative trait loci for specific mechanisms of resistance to Orobanche crenata Forsk. in pea (Pisum sativum L.). Mol. Breed. 25: 259–272.

Foy, C., Jacobsohn, R. and Jain R. (1987). Evaluation of tomato lines for resistance to glyphosate and⁄or Orobanche aegyptiaca Pers. In Parasitic Flowering Plants Proceeding of the 4th ISPFP, (Marburg, Germany: HC WEBER & WFORSTREUTER), pp. 221–230.

Foy C., Jain R. and Jacobsohn, R. (1989). Recent approaches for chemical control of broomrape (Orobanche spp.). Rev. Weed Sci. 4: 123–152.

Goldwasser Y., Eizenberg H., Hershenhorn J., Plakhine D., Blumenfeld T., Buxbaum H., Golan S., and Kleifeld

Y. (2001). Control of Orobanche aegyptiaca and O. ramosa in potato. Crop Prot. 20: 403–410.

Goyet V., Billard E., Pouvreau J.B., Lechat M.M., PelletiernS., Bahut M., Monteau F., Spíchal L., Delavault P., Montiel G., et al. (2017). Haustorium initiation in the obligate parasitic plant Phelipanche ramosa involves a host-exudated cytokinin signal. J. Exp. Bot. 68: 5539–5552.

Goyet V., Wada S., Cui S., Wakatake T., Shirasu K., Montiel G., Simier P. and Yoshida S. (2019). Haustorium Inducing Factors for Parasitic Orobanchaceae. Front. Plant Sci. 10: 1056.

Gressel J. (2009) Crops with target-site herbicide resistance for Orobanche and Striga control. 560–565.

Gutjahr C., and Paszkowski U. (2009). Weights in the balance: Jasmonic acid and Salicylic acid signaling in root-biotroph interactions. Mol. Plant-Microbe Interact. 22 763–772.

Hasegawa S., Tsutsumi T., Fukushima S., Okabe Y., Sait J., Katayama,M., Shindo Yamada Y., Shimomur K., Yoneyama K., et al. (2018). Low Infection of Phelipanche aegyptiaca in Micro-Tom Mutants Deficient in CAROTENOID CLEAVAGE DIOXYGENASE 8. Int. J. Mol. Sci. 19,: 2645.

Hershenhorn J., Eizenberg H., Dor E., Kapulnik Y. and Goldwasser Y. (2009). Phelipanche aegyptiaca

management in tomato. Weed Res. 49: 34–47.

Hershenhorn J., Goldwasser Y., Plakhine D., Lavan Y., Herzlinger G., Golan S., Chile T., and Kleifeld Y. (1998b). Effect of Sulfonylurea Herbicides on Egyptian Broomrape (Orobanche aegyptiaca) in Tomato (Lycopersicon esculentum) under Greenhouse Conditions. Weed Technol. 12: 115–120.

Hershenhorn,â J., Plakhine D., Goldwasser Y., Westwood J.H., Foy C.L., and Kleifeld Y. (1998a). Effect of Sulfonylurea Herbicides on Early Development of Egyptian Broomrape (Orobanche aegyptiaca) in Tomato (Lycopersicon esculentum). Weed Technol. 12: 108–114.

Jamil M., Kountche B.A. and Al-Babili S. (2021). Current progress in Striga management. Plant Physiol. 185, 1339–1352.

Jia K.P., Baz L. and Al-Babili S. (2018). From carotenoids to strigolactones. J. Exp. Bot. 69: 2189–2204.

Joel D.M. (2000). The long-term approach to parasitic weeds control: Manipulation of specific developmental mechanisms of the parasite. Crop Prot. 19:753–758.

Joel D.M., ChaudhuriS.K., Plakhine D., Ziadna H. and SteffensJ.C. (2011). Dehydrocostus lactone is exuded from sunflower roots and stimulates germination of the root parasite Orobanche cumana. Phytochemistry, 72: 624–634.

Kannan C. and Zwanenburg B. (2014). A novel concept for the control of parasitic weeds by decomposing germination stimulants prior to action. Crop Prot. 61: 11–15.

Kebede M. and Ayana B. (2018). Economically Important Parasitic Weeds and Their Management Practices in Crops. J. Environ. Earth Sci. 8:104–115.

Kleifeld Y., Goldwasser Y., Herzlinger G., Joel, D.M., Golan =S. and Kahana D. (1994). The effects of flax (Linum usitatissimum L.) and other crops as trap and catch crops for control of Egyptian broomrape (Orobanche aegyptiaca Pers.). Weed Res. 34:, 37–44.

Klein O and Kroschel J. (2002). Biological control of Orobanche spp. with Phytomyza orobanchia, a review. BioControl 47: 245–277.

Kohlen W., Charnikhova T., Lammers M., Pollina T., Tóth P., Haider I., Pozo M.J., de Maagd R.A., Ruyter-Spira C., Bouwmeester H.J., et al. (2012). The tomato CAROTENOID CLEAVAGE DIOXYGENASE8 (SlCCD8) regulates rhizosphere signaling, plant architecture and affects reproductive development through strigolactone biosynthesis. New Phytol. 196: 535–547.

Koltai, H., Lekkala S.P., Bhattacharya C., Mayzlish-Gati E., Resnick N., Wininger S., Dor E., Yoneyama K., Yoneyama K., Hershenhorn,J., et al. (2010). A tomato strigolactone-impaired mutant displays aberrant shoot morphology and plant interactions. J. Exp. Bot. 61: 1739–1749.

Konsler T.R. (1973). Three mutants appearing in ‘Manapal’ tomato. Hortic. Sci. 8: 331–333.

Kostov K., Batchvarova R., and Slavov S. (2007). Application of chemical mutagenesis to increase the resistance of tomato to Orobanche ramosa L. Bulg. J. Agric. Sci. 13: 505–513.

Lati R.N., Filin S., Elnashef B., and Eizenberg H. (2019). 3-D Image-Driven Morphological Crop Analysis: A Novel Method for Detection of Sunflower Broomrape Initial Subsoil Parasitism. Sensors (Basel) 19: 1569

López-Ráez J.A., Charnikhova T., Gómez-Roldán, V., Matusova R., Kohlen W., De Vos R., Verstappen F., Puech- Pages V., Bécard G., Mulder P., et al. (2008a). Tomato strigolactones are derived from carotenoids and their biosynthesis is promoted by phosphate starvation. New Phytol. 178: 863–874.

López-Ráez J.A., Charnikhova T., Mulder P., Kohlen W., Bino R., Levin I. and Bouwmeester H. (2008b). Susceptibility of the tomato mutant high pigment-2dg (hp-2dg) to Orobanche spp. infection. J. Agric. Food Chem. 56: 6326–6332.

Maalouf F., Khalil S., Ahmed S., Akintunde A.N., Kharrat M., El K., Hajjar S. and Malhotra R.S. (2011). Yield stability of faba bean lines under diverse broomrape prone production environments. Fuel Energ. Abstr. 124: 288–294.

Mauromicale G., Monaco A., Longo A.M.G. and Restuccia A. (2005). Soil solarization, a nonchemical method to control branched broomrape (Orobanche ramosa) and improve the yield of greenhouse tomato. Weed Sci. 53: 877–883.

Mejri S., Mabrouk Y., Belhadj O. and Saidi M (2018). Orobanche foetida resistance in two new faba bean genotypes produced by radiation mutagenesis. Int. J. Radiat. Biol. 94: 671–677.

Minoia S., Petrozza A., D’Onofrio O., Piron F., Mosca,G., Sozio G., Cellini F., Bendahmane A. and Carriero F. (2010). A new mutant genetic resource for tomato crop improvement by TILLING technology. BMC Res. Notes 3: 69.

Nassib A.M., Ibrahim A.A. and Khali S.A. (1982). Breeding for Resistance to Orobanche. In Faba Bean Improvement, W.C. Hawtin G., ed. (Dordrecht: Springer Netherlands), pp. 199–206.

Nefzi F., TrabelsinI., Amri M., Triki E., Kharrat M. and Abbes Z. (2016). Response of some chickpea (Cicer arietinum L.) genotypes to Orobanche foetida Poir. parasitism. Chil. J. Agric. Res. 76, 170–178.

Nicolia A., Andersson M., Hofvander P., Festa G. and Cardi T. (2021b). Tomato protoplasts as cell target for ribonucleoprotein (RNP)-mediated multiplexed genome editing. Plant Cell Tissue Organ Cult. 144: 463– 467.

Nicolia A., Cuccurullo A., Contaldi F., Yoneyama K., Camerlengo,F., Festa G., Navarro A., D’Agostino N., Facchiano A., Scafuri B., et al. (2021a). CRISPR/Cas9-mediated mutagenesis as a strategy to develop resistant tomato plants against Orobanche. In Proceedings of the 2nd PlantEd Conference Plant Genome Editing: The Wide Range of Applications, A. Santino, ed. (Lecce: Institute of Sciences of Food Production- National Research Council), p. 23.

Parker C. (2009). Observations on the current status of Orobanche and Striga problems worldwide. Pest Manag. Sci. 65: 453–459.

Parker C. and Riches C.R. (1993). Parasitic Weeds of the World: Biology and Control. CAB International. United States from University of Arizona Press.

Pavan S., Schiavulli A., Marcotrigiano A.R., Bardaro N., Bracuto V., Ricciard,iF., Charnikhova T., Lotti C., Bouwmeester H. and Ricciardi L. (2016). Characterization of Low-Strigolactone Germplasm in Pea (Pisum sativum L.) Resistant to Crenate Broomrape (Orobanche crenata Forsk.). Mol. Plant-Microbe Interact. 29: 743–749.

Péron T., Candat A., Montiel G., Veronesi C., Macherel D., Delavault P. and Simier P. (2017). New insights into phloem unloading and expression of sucrose transporters in vegetative sinks of the parasitic plant Phelipanche ramosa L. (Pomel). Front. Plant Sci. 7: 2048.

Qasem J.R., and Kasrawi M.A. (1995). Variation of resistance to broomrape (Orobanche ramosa) in tomatoes. Euphytica 81: 109–114.

Radi A., Dina P. and Guy A. (2006). Expression of sarcotoxin IA gene via a root-specific tob promoter enhanced host resistance against parasitic weeds in tomato plants. Plant Cell Rep. 25: 297–303.

Raupp F.M. and Spring O. (2013). New sesquiterpene lactones from sunflower root exudate as germination stimulants for Orobanche cumana. J. Agric. Food Chem. 61: 10481–10487.

Roitsch T., and Ehneß R. (2000). Regulation of source/sink relations by cytokinins. Plant Growth Regul. 32: 359–367.

Romá B., Torres A.M., Rubiales D., Cubero J.I. and Satovic Z. (2002). Mapping of quantitative trait loci controlling broomrape (Orobanche crenata Forsk.) resistance in faba bean (Vicia faba L.). Genome 45, 1057–1063.

Rubiales D. (2003). Parasitic plants, wild relatives and the nature of resistance. New Phytol. 160: 459–461.

Rubiales D., Fernández-Aparicio, M., Vurro, M. and Eizenberg, H. (2018). Editorial: Advances in Parasitic Weed Research. Front. Plant Sci. 9: 236.

Rubiales D., Fondevilla S. and Fernández-Aparicio M. (2020). Development of Pea Breeding Lines with Resistance to Orobanche crenata Derived from Pea Landraces and Wild Pisum spp. Agronomy 11: 36.

Rubiales D., Pérez-de-Luque A., Joel, D.M., Alcántara C., and Sillero J.C. (2003). Characterization of resistance in chickpea to crenate broomrape (Orobanche crenata). Weed Sci. 51: 702–707.

Rubiales D., Rojas-Molina M.M. and Sillero J.C. (2016). Characterization of resistance mechanisms in faba bean (Vicia faba) against broomrape species (Orobanche and Phelipanche spp.). Front. Plant Sci. 7: 1747.

Runyon J.B., Tooker J.F., Mescher M.C. and De Moraes C.M. (2009). Parasitic Plants in Agriculture: Chemical Ecology of Germination and Host-Plant Location as Targets for Sustainable Control: A Review. In Organic Farming, Pest Control and Remediation of Soil Pollutants., E. Lichtfouse, ed. (Dordrecht: Springer Netherlands), pp. 123–136.

Sauerborn J. and Saxena M. (1986). A review on agronomy in relation to Orobanche problems in faba bean (Vicia faba L.). In ter Borg S. (Ed.), Proceedings of a workshop on biology and control of Orobanche, Landbouwuniversiteit, pp. 160–165.

Sauerborn J., Linke K-H., Saxena M.C. and Koch W. (1989). Solarization; a physical control method for weeds and parasitic plants (Orobanche spp.) in Mediterranean agriculture. Weed Res. 29: 391–397.

Saxena M., Linke K. and Sauerborn J. (1994). Integrated control of Orobanche in cool-season food legumes. In Pieterse A., Verkleij J., Borg S. (Eds.), Biology and management of Orobanche. Royal Tropical Institute pp. 419–431.

Seto Y., Sado, A., Asami K., Hanada A., Umehara M., Akiyama K. and Yamaguchi S. (2014). Carlactone is an endogenous biosynthetic precursor for strigolactones. Proc. Natl. Acad. Sci. USA. 111: 1640–1645.

Surov T., Aviv D., Aly R., Joel D.M., Goldman-Guez T. and Gressel J. (1998). Generation of transgenic asulam- resistant potatoes to facilitate eradication of parasitic broomrapes (Orobanche spp.), with the sul gene as the selectable marker. Theor. Appl. Genet. 96: 132–137.

Thomas H., Sauerborn J., Müller-Stöver D., Ziegler A., Bedi, J.S. and Kroschel, J. (1998). The Potential of Fusarium oxysporum f. sp. orthocerasas a Biological Control Agent for Orobanche cumana in Sunflower. Biol. Cont.: 13: 41–48.

Torres-Vera R., García, J.M. Pozo, M.J. and López-Ráez J.A. (2016). Expression of molecular markers associated to defense signaling pathways and strigolactone biosynthesis during the early interaction tomato-Phelipanche ramosa. Physiol. Mol. Plant Pathol. 94: 100–107.

Valderrama M.R., Román B., Satovic Z., Rubiales D., Cubero J.I. and Torres A.M. (2004). Locating quantitative trait loci associated with Orobanche crenata resistance in pea. Weed Res. 44: 323–328.

Verkleij J., and Kuiper E. (2000). Various approaches to controlling root parasitic weeds. Biotech. Develop. Monitor: 41: 16–19.

Vogel J.T., Walter M.H., Giavalisco P., Lytovchenko A., Kohlen W., Charnikhova T., Simkin A.J., Goulet C., Strack D., Bouwmeester H.J., et al. (2010). SlCCD7 controls strigolactone biosynthesis, shoot branching and mycorrhiza-induced apocarotenoid formation in tomato. Plant J. 61: 300–311.

Vurro M., Pérez-de-Luque A. and Eizenberg H. (2017). Parasitic Weeds. In Hatcher P.E., Froud-Williams R.J. (Ed.), Weed Research: Expanding Horizons, John Wiley & Sons Ltd, pp. 313–353.

Wakabayashi T., Hamana M., Mori, A., Akiyama R., Ueno K., Osakabe K., Osakabe Y., Suzuki H., Takikawa H., Mizutani M., et al. (2019). Direct conversion of carlactonoic acid to orobanchol by cytochrome P450 CYP722C in strigolactone biosynthesis. Sci. Adv. 5: 1–11.

Waters, M.T., Gutjahr, C., Bennett, T. and Nelson, D.C. (2017). Strigolactone Signaling and Evolution. Annu. Rev. Plant Biol. 68: 291–322.

Watson A.K. (2013). Biocontrol. In Joel D.M., Gressel J., Musselman L.J. (Ed.), Parasitic Orobanchaceae: Parasitic Mechanisms and Control Strategies, Springer Berlin Heidelberg, pp. 469–497.

Yao Z., Tian F., Cao X., Xu Y., Chen M., Xiang B. and Zhao S. (2016). Global Transcriptomic Analysis Reveals the Mechanism of Phelipanche aegyptiaca Seed Germination. Int. J. Mol. Sci. 17: 1139.

Yoder J.I., and Scholes J.D. (2010). Host plant resistance to parasitic weeds; recent progress and bottlenecks. Curr. Opin. Plant Biol. 13: 478–484.

Yoshida S. and Kee Y.J. (2021). Large-scale sequencing paves the way for genomic and genetic analyses in parasitic plants. Curr. Opin. Biotechnol. 70: 248–254.

Yoshida S., Kim S., Wafula E.K., Tanskanen J., Kim Y.M., Honaas L., Yan, Z., Spallek, T., Conn C.E., Ichihashi Y., et al. (2019). Genome Sequence of Striga asiatica Provides Insight into the Evolution of Plant Parasitism. Curr. Biol. 29: 3041-3052.e4.

Zarban R.A., Hameed U.F.S., Jamil M., Ota T., Wang J.Y., Arold S.T., Asami T. and Al-Babili S. (2021). Rational design of Striga hermonthica-specific seed germination inhibitors. Plant Physiol. 88: 1369-1384.

Zermane N., Souissi T., Kroschel J. and Sikora R. (2007). Biocontrol of broomrape (Orobanche crenata Forsk. and Orobanche foetida Poir.) by Pseudomonas fluorescens isolate Bf7-9 from the faba bean rhizosphere. Biocontrol Sci. Technol. 17: 483–497.

Downloads

Published

2022-12-15

Issue

Section

VEGETABLE, AROMATIC AND MEDICINAL PLANTS

How to Cite

(1)
A. Cuccurullo; A. Nicolia; M. Vurro; T. Cardi. Genetic and Agronomic Approaches to Control Orobanche and Phelipanche Spp. Parasitic Weeds in Vegetables and Legumes. RJH 2022, 3, 63-82. https://doi.org/10.51258/RJH.2022.08.